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Exact Thermodynamic Behavior of a Generalized 
Spin-Isospin Ising System on the Bethe Lattice 
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We study a generalized Ising system consisting of a Bethe lattice on every site of 
which two spin-l/2 and two isospin-1/2 (or atomic species A) states can be 
realized, the spin-species interacting with appropriate nearest neighbor 
couplings. The system is equivalent to that of four states per site and we obtain 
its exact thermodynamic behavior. The case of a fixed concentration of species is 
the annealed or liquid magnetic binary alloy. The temperature dependence of 
the short-range-order (SRO) parameter of such systems is obtained as an 
application of the theory and discussed in connection with relevant material 
from the literature. When fixing both the concentration and the nearest 
neighbor spatial correlation of the species, we obtain Eggarter's formulas for the 
"frozen-in" species problem, which therefore are only approximately valid even 
on the Bethe lattice. 
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1. I N T R O D U C T I O N  

Magnetic binary alloys are a particular class of two-component Ising 
systems and a method introduced by Eggarter (1) produces approximately 
their thermodynamic behavior when the atoms are "frozen in." The method 
and its straightforward extensions have been applied to investigate several 
aspects of such systems, (2"3~ including the influence of atomic clustering 
interactions in them. (4) 

A more general class of two-component Ising systems can be defined 
by considering two kinds of states that can be realized on every lattice site, 
both of the "spin-1/T' type. Such kinds can be the usual/~ = O-#o magnetic 
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moment (a = _+l) and any other two-state site variable X, such as the 
isospin 1/2 or more realistically the atomic species A or B variable (X=  A 
or B). A configuration-dependent Hamiltonian of the Ising type is con- 
sidered and when the nearest neighbor interaction u(Xi, ai, Xj, aj) is the 
sum of two terms G(~r t, aj) + U(Xi, Xj) each involving one kind of variables 
only, the system trivially splits into two independent subsystems of the 
usual Ising type. The case of coupled such subsystems is studied here 
and more specifically the case where magnetic coupling between two 
neighboring sites depends on the "species" states A or B being realized on 
the sites. 

The system is equivalent to that of four states per site and when all 
possible configurations are allowed, this can be a model for the magnetic 
binary alloy in equilibrium with a heat and particle A, B reservoir as for 
systems undergoing magnetic and chemical interactions. Further models 
can be realized by successively imposing conditions on the unconstrained 
ensemble. When restricting to particle A (B)-conserving configurations, this 
can be a model for the annealed magnetic alloy, (5'6) the magnetic liquid 
alloy, (7) or the magnetic lattice gas. The annealed behavior of the Ising 
model has been studied in the case of bond-disordered systems. (8-1~ 

Finally, when restricting the accessible configurations further so that a 
neighbor-site species SRO parameter PAre is also conserved, the thermo- 
dynamic behavior of our system should approach that of the "frozen-in" 
species system but it should not coincide with it, since farther-neighbor 
species correlations (beyond PAm) in our system remain temperature 
dependent in general. In spite of these expected differences, we obtain in 
this case a thermodynamic behavior that coincides with the one produced 
by Eggarter's treatment ~1) of the magnetic binary alloy with "frozen-in" 
species. 

Our method, which is similar in structure to the one introduced by 
Eggarter, (~) produces on the Bethe lattice the exact thermodynamic 
behavior of all three cases discussed above and at the same time reveals 
fully the limitations of Eggarter's treatment, namely that it remains 
approximate even on the Bethe lattice. 

We present in Section 2 the formalism and in Section 3 we present and 
discuss the behavior of appropriate thermodynamic probabilities in relation 
to cases already presented in the literature. 

2. F O R M A L I S M  

We consider an Ising spin system on a Bethe lattice of coordination z 
with spin carrying atoms of two kinds, called species A and B, randomly 
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distributed on the lattice sites. The Hamiltonian of such a system is given 
by 

- [J(Xi, (1) 
( i , j )  i 

where we consider only nearest neighbor interactions and o-i = _+ 1 indicate 
the spin orientations. J(Xi, Xj) > 0 are ferromagnetic coupling constants for 
the neighboring Xi, Xj species and U(Xi, Xj) are neighboring species 
interactions, with U(A, A ) > 0 ,  U(B, B ) > 0 ,  U(A, B ) < 0 .  Here H is the 
external magnetic field and #(X~) the magnetic moment of the species 
occupying site i. 

We introduce the spin species pair probabilities P(X~, ai;Xj, aj) 
between neighboring sites i and j as well as the single-site probabilities 
P(Xi, ai), where (Xi, oi) is any of the four states (A, T ) -  1, (A, + )=2 ,  
(B, ]') - 3, or (B, $) - 4 that can be realized on lattice site i. The pair and 
single-site probabilities can therefore be expressed by P(/, k) and P(l), 
respectively (where I, k label those four states), and they obey the relations 

4 

Z P(l, k) = P(l) (2) 
k - - 1  

4 

Z P(/)= 1 (3) 
/ = 1  

The probability for every configuration P(ko, kz, k2 ..... kz) where a lattice 
site 0 is occupied by state ko and its z neighboring lattice sites are occupied 
by states kl,k2,. . . ,k ~ can be expressed as a product of single and pair 
probabilities 

P(k o, k~, k2,..., k~) = P(ko)'-z [I P(ko, k~) (4) 
i = l  

due to the Bethe lattice topology. (I,3/ 

2.1. Case A. Uncons t ra ined  Case 

We extend the basic thermodynamic relations used originally by 
Eggarter(~): 

P(ko, kl ,k2 ..... kz) 
P(k'o, kl, k2 ..... kz) 

= exp[fl AE(kl, k2 ..... kz, ko ~ k~)] (5) 

where the state of site O is "flipped" from ko to ko with the states kl, 
k2,..., kz on the z nearest neighboring sites of the central site O kept fixed. 
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This relation is exact in thermodynamic equilibrium due to the Cayley tree 
topology of the Bethe lattice. 

The basic thermodynamic relations (5) can be expressed in terms of 
pair probabilities due to (2) and (4). Taking k0 = l, k; = k in (5) with the 
neighboring sites in state m, (l, {m})~  (k, {m}), we obtain a system of 
equations of the form 

(P(l)) l - z ( P ( m , l ) )  z x) 
P(k)J \P(m, k)J = e~AE(~m~"~ (6) 

For m =  1 and l ~ k  the AE are given by 

(a) I= 1 ---,k=2: AE({1}, 1 --'2)=2#AH+2ZJAA (7a) 

(b) l=  3 - - ,k=  4: AE({1} ,3~4)=2#BH+2zJBB (7b) 

(c) / = l ~ k = 3 :  AE({1},I--*3) 

= ( ~ ' A - - u . ) H + z ( J A A - - J ~ . ) + z ( U ~ - -  VA.) (7c) 

and using (7a)-(7c), we obtain from (6) a system of three equations 
corresponding to cases (a) (c). 

Statistical homogeneity in the bulk of the lattice gives six relations 
P(X~, a~; Xj, aj) = P(X~, aj; Xi, a~) [or equivalently P(I, k) = P(k, l)], 
which reduce the number of independent pair probabilities P(l, k) from 16 
to 10. 

Dividing by parts two of equations (6) that differ on the peripheral site 
states only ({m} on one and {n} on the other), we obtain nine more 
equations (m ~ n, l ~ k are three "flips" each) of the form 

P(m, l) P(n, k)=  e~ ~e ( . . . .  k,l) (8) 
P(m, k) P(n, l) 

where 

AE(m, n, k, l) = Uml-~- Unk- Umk- Unl 

+ Jmt+J.k- -Jm~--J . l ,  Jmi--~m~,Y~ 

The subscripts in U and J denote the "species" part and those in a denote 
the spin part of the state (i.e., m=-Xm, am; gm=A or B; a m =  __l). Of 
these, only six are independent, because (m ~ n ,  l--*k) and ( l ~ k ,  m--*n) 
give the same equations due to statistical homogeneity. Table I shows the 
(m, n, k, l) of the six independent equations (8) and the corresponding 
equation number assigned to each case. 

Equations (6), (7a) (7c), and (Sa)-(8f), along with the normalization 
condition [relations (2) and (3)], are the ten algebraic equations needed to 
completely determine the pair probabilities of the system. 
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Table I 

m n k l Equation number 

l 2 1 2 (Sa) 
1 3 1 2 (8b) 
1 4 1 2 (8c) 
3 1 3 4 (8d) 
3 4 3 4 (8e) 
! 3 1 3 (8f) 
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2.2. Case B. The Magnet ic  Binary Al loy 

We consider the number of magnetic species A and B in the system to 
be fixed with a concentration of the A "atoms" CA. This implies 

~ P(A, ~,; Xj, r;j) = CA (9) 

Of the nine equations (6)-(8), only two are derived from transitions 
that do not conserve the species concentration, namely Eq. (6), case (c), 
and Eq. (8f). Equation (8f), though, is acceptable in the present case where 
species concentration is the only condition imposed, since it can be derived 
by considering a double cluster consisting of two neighboring "central" 
sites occupied by different species (e.g., states A T, BI") and their other 
2 ( z - 1 )  nearest neighbors. By mutually "flipping" the states in the 
two "central" sites (AT ~BT,  BI" ~A] ' )  in the cluster, a concentration- 
preserving "flip," we obtain a thermodynamic relation similar to (5), which 
with proper choice of the states in the perimeter of the cluster gives again 
Eq. (Sf). 

Consequently, the system that determines the P(k, l) in the present 
case differs from the one in case A, in that Eq. (6), case (c), is replaced by 
the fixed-concentration condition, Eq. (9). 

2.3. Case C. The Magnet ic  Al loy wi th  Fixed Shor t -Range Order 

In this case we further restrict the magnetic binary alloy case by 
requiring both the concentration and nearest neighbor correlation of the 
magnetic species to remain fixed. This extra restriction is expressed as 

P(A, ai; B, a/) = CA PB/A 
o" i ,  o'j 

where PS/A is the correlation parameter. 

(lo) 
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This relation replaces Eq. (8f) of the two preceding cases, since it is 
obtained from species exchange (see Section 2.2), which does not conserve 
species correlation. Note that in this case the neighboring species inter- 
actions U(J(i, Xj) are not included in the equations that determine the pair 
probabilities. 

The ten equations that determine here the pair probabilities [Eqs. (6), 
cases (a) and (b), Eqs. (8a)-(Se), (9), and (10), along with the nor- 
malization condition, relations (2) and (3)] are identical to those obtained 
by Eggarter (1) for the case of "frozen-in" magnetic species A and B on the 
system. 

Since our treatment is exact for the Bethe lattice, we conclude that 
Eggarter's treatment of the "frozen-in" case is approximate even for the 
Bethe lattice, a negative feature not shared by the usual Bethe-Peierls 
approximation. Indeed, one can easily verify from the ten equations of the 
present subsection that Eggarter's theory gives temperature-dependent 
probabilities for any species configuration containing more than just two 
neighboring species, in violation of the "frozen-in" hypothesis. This 
violation may be very strong in certain cases. ~11) 

2.4. Reduct ion of Cases A and B to the Case C Formalism 

In this section we show that the pair probabilities P(I, k) pertaining to 
cases A and B can be obtained from the solution of the set of equations of 
case C as follows: 

Case B: In this case, the pair probabilities P(I, k) satisfy the same 
equations as in case C with the exception of Eq. (8f), which in case C is 
replaced by Eq. (10). Since these probabilities substituted in Eq. (10) give 
the (then) temperature-dependent parameter PAre, there is a one-to-one 
correspondence between PA/B and (RA + RB), where 

RA = UAA- UAB, RB = UBB- UAB (1 1 ) 

as the UAA, UBB, UAB appear in the (RA+RB) form in Eq. (8f). The 
RA + RB and PA/B are related in terms of the P(k, l) as follows: 

PAm=[P(1,3)+P(1,4)+P(2,3)+P(Z, 4)]/[P(3)+P(4)] (12) 

[where P(3)=~4= 1 P(3, l) and P(4)=524=1 P(4, l), according to Eq. (3)] 
and then the P(k, l) of case B coincide with those of case C for the 
appropriate value PA/B obtained from Eq. (12). 

Case A. In this case the pair probabilities P(k, l) satisfy the same 
equations as in case B with the exception of Eq. (6), case (c), which in case 
B is replaced by Eq. (9). Since these probabilities substituted in Eq. (9) give 
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the (then) temperature-dependent concentration CA, there corresponds one 
c~ for the pair (RA, Rg) [see Eq. (11)] that is used in case A. The cA is 
related to RA, RB as follows: 

4 
c ~ =  y~ [e (1 ,  l ) +  e (2 , / )3  (13) 

and then the P(k, I) of case A coincide with those of case B, with the 
appropriate value of ca obtained from Eq. (13). Obviously, case A can 
subsequently be reduced to case C also. 

The reduction of cases A and B to case C gives in general different 
correspondences of parameters at different values of T. 

3. RESULTS A N D  DISCUSSION 

The parameter space in cases A, B, and C studied in Section 2 is very 
large, containing quantities such as JAA, JBB, JAB, UAA, UBs, UAB, CA, etc. 
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Fig. 1. Concentration of A-type "atoms" c A versus temperature kT/JAA {'or four different 
values of RA+RB: (T) RA+RB=2 for RA=1.9(1), 1.3(2), 1.0(3); (]I) RA+RB=I  for 
RA~0.9(1), 0.5 (2), 0.0(3); (III) RA+R~=0.5 for RA=0,5(1), 0,1 (2), 0.0293 (3), and 
0,0 (4); (IV) RA + Rs = 0.0 for RA = 0.0; where RA and RE are in units OfJAA. 
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The behavior of basic thermodynamic quantities such as energy and 
magnetization in case C, on the other hand, coincides, as discussed in the 
introduction, to the "frozen-in" species case as studied in the literature (in 
the framework of Eggarter's method) both for ferromagnetic (1) and 
antiferromagnetic (2'3) systems. Therefore, since at every T, cases A and B 
can be reduced to case C (see Section 2.4), one can obtain the ther- 
modynamic behavior of all three cases by using the already published 
corresponding "frozen-in" results mentioned above. For that purpose, the 
relations of cA, PA/B of that method to the RA, RB involved in cases A and 
B is needed, and we present in Figs. 1 and 2 these relations for represen- 
tative choices of (RA, RB) for a z = 4 neighbor Bethe lattice system with 
JAA = 2JBB = 10JAB > 0 in the absence of magnetic field. 

In these figures we present CA(RA, RB) and PAm(RA, RB) in a way that 
is convenient for use in both cases A and B. Then, since in case B, cA 
depends on RA + RB, we have chosen our (RA, RB) pairs required for the 
reduction A --, C, at different values of R A + RB, namely RA + RB = 2, 1, 
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Fig. 2. Correlation PA/B versus temperature/JAA for the same cases as in Fig. 1. 



Generalized Spin-lsospin Ising System 199 

0.5, and 0 (in units of JAA),  SO that Fig. 1 can be used for the reduction 
B --+ C as well. 

Some interesting features emerge from Figs. 1 and 2, namely that the 
roles of A and B are not interchangeable due to JAA 5~ JBB considered here, 
but at the same time B dominates over A when R B is sufficiently larger 
than RA. There are also interesting marginal cases (see, for example, cases 
III2, III3 in Figs. 1 and 2) between which the system is passing from A 
domination to B domination and structure emerges in the curves (see 
Fig. t, case III3) pertinent to that passage. The possibility of two, dominant 
A and dominant B, phases at low T, depending on initial or boundary con- 
ditions, also exists in the marginal cases. Slope discontinuities are present 
in all cases presented in Figs. 1 and 2, relating to phase transitions of the 
corresponding systems. 

In order to illustrate the use of Figs. 1 and 2 in studying systems 
belonging to case A or case B, we have produced the T dependence of the 
SRO parameter PA/B for a system belonging to case B. Considering this 
system as a model for liquid or annealed magnetic alloys, (s-v) we have 
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0.8 

0.7 

0.6 
03 

i I 

0.4 . 0.6 0 5 JAA/R T 

Fig. 3. Correlation PA/B versus JAA/temperature for concentration c A = 0.9 and three values 
of R A + R s :  (a)0.5, (b) l.0, and (c) 2.0, as well as. (d) for concentration CA=0.8 and 
R A + R B = 1.0; deduced from Figs. 1 and 2. 
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o b t a i n e d ,  us ing  Figs.  1 a n d  2, a b e h a v i o r  of  PA/B (see Fig ,  3) qua l i t a t i ve ly  
the s ame  as in ref. 5 (see Fig .  12 there in) .  

A s t u d y  t ha t  w o u l d  s p a n  the w h o l e  p a r a m e t e r  space  refer red  to  a b o v e  
s h o u l d  t r ea t  the  cases  of  " a n t i f e r r o m a g n e t i c " - t y p e  spin  o r  species  c o u p l i n g  
by  i n t r o d u c i n g  subla t t ices .  ~3~ 
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